当前位置: > 已知函数f(x)=x3-ax2+bx+3(a,b∈R),若函数在区间[0,1]上单减,求a2+b2的最小值...
题目
已知函数f(x)=x3-ax2+bx+3(a,b∈R),若函数在区间[0,1]上单减,求a2+b2的最小值

提问时间:2020-11-22

答案
f(x)=x³-ax²+bx+3,则:f'(x)=3x²-2ax+b
因函数f(x)在[0,1]上递减,则:
①f'(0)=b≤0;
②f'(1)=3-2a+b≤0,即:2a-b≥3
由①、②组成一个平面区域【可行域】,而d²=a²+b²就是这个区域内的点到原点的距离的平方,得:d的最小值是:d=|3|/√5=(3/5)√5,则:d²=a²+b²的最小值是9/5,则:
a²+b²∈[9/5,+∞)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.