当前位置: > 证明原函数和反函数单调性相同...
题目
证明原函数和反函数单调性相同
已知y=f(x)在[a,b]上是增函数,
求证y=f-1(x)在[f(a),f(b)]上是增函数
解题过程开头部分已给出:
任意取x1,x2∈[f(a),f(b)],则存在x'1,x'2 ∈[a,b],使得f(x'1)=x1,f(x'2)=x2
请帮我把这个题做完,

提问时间:2020-11-22

答案
【证明】
任意取x1,x2∈[f(a),f(b)]且x1则存在x'1,x'2 ∈[a,b],使得f(x'1)=x1,f(x'2)=x2
因为f(x)在[a,b]内是增函数
所以函数值越大,自变量越大
由x1又由反函数的性质可知,f-1(x1)=x1',f-1(x2)=x2'
所以f-1(x1)-f-1(x2)=x1'-x2'<0
f-1(x1)所以函数f-1(x)在[f(a),f(b)]内也是增函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.