当前位置: > 设A为n阶方阵,且满足A^2-3A+2E=0,证明A的特征值只能是1或2...
题目
设A为n阶方阵,且满足A^2-3A+2E=0,证明A的特征值只能是1或2

提问时间:2020-11-22

答案
设A的特征值是a,则a^2-3a+2 是 A^2-3A+2E 的特征值.
由已知 A^2-3A+2E = 0,而零矩阵的特征值只能是零,
所以 a^2-3a+2 = 0,即 (a -1)(a - 2) = 0.所以 a=1 或 a = 2.
即 A的特征值只能是1或2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.