当前位置: > 如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关...
题目
如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.

提问时间:2020-11-22

答案
我的猜想是:PD、PE、CF之间的关系为PD=PE+CF.理由如下:
连接AP,则S△PAC+S△CAB=S△PAB
∵S△PAB=
1
2
AB•PD,S△PAC=
1
2
AC•PE,S△CAB=
1
2
AB•CF,
又∵AB=AC,
∴S△PAC=
1
2
AB•PE,
1
2
AB•PD=
1
2
AB•CF+
1
2
AB•PE,
1
2
AB(PE+CF)=
1
2
AB•PD,
∴PD=PE+CF.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.