当前位置: > 设y=y(x)是由函数方程 ln(x+2y)=x^2-y^2 所确定的隐函数 ,求y=y(x)在(-1,1)处的切线方程?...
题目
设y=y(x)是由函数方程 ln(x+2y)=x^2-y^2 所确定的隐函数 ,求y=y(x)在(-1,1)处的切线方程?

提问时间:2020-11-22

答案
方程 ln(x+2y)=x²-y²
对y 关于x求导,得
(1+2y')/(x+2y)=2x-2yy'
1+2y'=2x²+4xy-2xyy'-4y²y'
(2+2xy+4y²)y'=2x²+4xy-1
y'=(2x²+4xy-1)/(2+2xy+4y²)
所以,y=y(x)在)-1,1)处的切线斜率是
y'(-1,1)=(2-4-1)/(2-2+4)=-3/4
因此所求的切线方程是
y-1=-3/4(x+1)

3x+4y-1=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.