题目
设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0
(1)试判断函数y=f(x)的奇偶性;
(2)试求方程f(x)=0在闭区间[-2008,2008]上的根的个数,并证明你的结论.
(1)试判断函数y=f(x)的奇偶性;
(2)试求方程f(x)=0在闭区间[-2008,2008]上的根的个数,并证明你的结论.
提问时间:2020-11-22
答案
(1)由f(2-x)=f(2+x),f(7-x)=f(7+x),
得f(x)=f(4-x),且f(x)=f(14-x),
即f(4-x)=f(14-x)
∴f(x)=f(x+10),
即函数的周期为10.
又f(3)=0,而f(7)≠0,
∴f(-3)=f(7)≠0,
即f(-3)≠f(3),f(-3)≠-f(3)
故函数y=f(x)是非奇非偶函数;
(2)由(1)知,f(x)=f(x+10)
又f(3)=f(1)=0⇒f(11)=f(13)=f(-7)=f(-9)=0
∵在闭区间[0,7]上,只有f(1)=f(3)=0,∴在[4,7]上无零点,
又f(7-x)=f(7+x),故在[7,10]上无零点,故在[0,10]上仅有两个解
故f(x)在[0,10]和[-10,0]上均有有两个解,
从而可知函数y=f(x)在[0,2008]上有402个解,在[-2008,0)上有401个解,
∴函数y=f(x)在[-2008,2008]上有803个解.
得f(x)=f(4-x),且f(x)=f(14-x),
即f(4-x)=f(14-x)
∴f(x)=f(x+10),
即函数的周期为10.
又f(3)=0,而f(7)≠0,
∴f(-3)=f(7)≠0,
即f(-3)≠f(3),f(-3)≠-f(3)
故函数y=f(x)是非奇非偶函数;
(2)由(1)知,f(x)=f(x+10)
又f(3)=f(1)=0⇒f(11)=f(13)=f(-7)=f(-9)=0
∵在闭区间[0,7]上,只有f(1)=f(3)=0,∴在[4,7]上无零点,
又f(7-x)=f(7+x),故在[7,10]上无零点,故在[0,10]上仅有两个解
故f(x)在[0,10]和[-10,0]上均有有两个解,
从而可知函数y=f(x)在[0,2008]上有402个解,在[-2008,0)上有401个解,
∴函数y=f(x)在[-2008,2008]上有803个解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1什么是计数单位,百位的计数单位是什么?百万位的计数单位是什么?
- 2有谁知道历史上汉景帝跟汉武帝是什么关系?是不是真正的父子?
- 3一道数学题(用方程解答)急!
- 4超额完成计划的十分之一这句话中表示单位1的量是什么
- 5照样子写词语亮如白昼、腾空而起
- 6大长方形,长和宽各减少8米,在,面积就减少864平方米,求小长方形面积?
- 7已知f(x)=ln²(1+x)-(x²)/(1+x﹚求函数f(x)的单调区间
- 8生命力最顽强的动物的事例 50字左右
- 9在乘方运算中,为什么当底数为负数时,指数必须是整数?
- 10经分析知道某物质只含有一种元素,则该物质( ) A.可能是混合物 B.一定是纯净物 C.一定是单质 D.不可能是化合物
热门考点