当前位置: > 证明关于X的方程(2x-3)(x-1)=k2有两个不相等的实数根...
题目
证明关于X的方程(2x-3)(x-1)=k2有两个不相等的实数根

提问时间:2020-11-21

答案
要使方程有两个不相等的实数根,歹尔塔必须大于零
b2-4ac>0
把方程(2x-3)(x-1)=k2展开得:2x2-2x-3x+3=k2
再合并移项得:2x2-5x+(3-k2)=0
b2-4ac=25-4x2(3-k2)=25-24+8k2=1+8k2>1,k2绝对大于零
所以方程(2x-3)(x-1)=k2有两个不相等的实数根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.