当前位置: > 如图,已知等边△ABC中,D是BC上一点,△DEB为等边三角形,连接CE并延长交AB的延长线于点M,连接AD并延长与BE的延长线交于点N,再连接MN. 求证:△BMN是等边三角形....
题目
如图,已知等边△ABC中,D是BC上一点,△DEB为等边三角形,连接CE并延长交AB的延长线于点M,连接AD并延长与BE的延长线交于点N,再连接MN.
求证:△BMN是等边三角形.

提问时间:2020-11-21

答案
证明:∵△ABC和△DEB为等边三角形,
∴BC=AB,∠ABC=∠DBE=60°,DB=EB,
在△ADB与△CBE中,
BC=AB
∠ABC=∠DBE=60°
DB=EB

∴△ADB≌△CBE(SAS),
∴∠BAD=∠BCE,
又∵∠ABN=∠ABC+∠CBN=120°,∠CBM=180°-∠ABC=120°,即∠ABN=∠CBM,
在△ABN和△CBM中,
∠BAN=∠BCE
AB=CB
∠ABN=∠CBM

∴△ABN≌△CBM(ASA),
∴BN=BM.
又∵∠NBM=180°-∠ABC-∠DBE=60°,
∴△BMN是等边三角形.
首先根据等边三角形的性质得出BC=AB,∠ABC=∠DBE=60°,DB=EB,由SAS证出△ADB≌△CBE,于是∠BAD=∠BCE;
然后根据平角定义易知∠ABN=∠CBM=120°,结合AC=BC,利用ASA可证△ABN≌△CBM,从而有BM=BN.

等边三角形的判定与性质;全等三角形的判定与性质.

本题考查了等边三角形的性质、全等三角形的判定和性质,解题的关键是证明△ADB≌△CBE和△ABN≌△CBM.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.