题目
(1-sin^6 a-cos^6 a)/(1-sin^4 a-cos^4 a)的化简结果
提问时间:2020-11-21
答案
(1-sin^6 a-cos^6 a)/(1-sin^4 a-cos^4 a)
=[1-(sin^6 a+cos^6 a)]/[(1-sin^4 a-cos^4 a]
=[1-(sin^2 a+cos^2 a)(sin^4 a-sin^2 acos^2 a+cos^4 a)]/[(1-sin^4 a-cos^4 a]
=[1-(sin^4 a-sin^2 acos^2 a+cos^4 a)]/(1-sin^4 a-cos^4 a)
=[1-sin^4 a+sin^2 acos^2 a-cos^4 a]/(1-sin^4 a-cos^4 a)
=1+sin^2 acos^2 a/(1-sin^4 a-cos^4 a)
=1+sin^2 acos^2 a/[(1-sin^4 a)-cos^4 a]
=1+sin^2 acos^2 a/[(1-sin^2 a)(1+sin^2 a)-cos^4 a]
=1+sin^2 acos^2 a/[cos^2 a(1+sin^2 a)-cos^4 a]
=1+sin^2 acos^2 a/[cos^2 a(1+sin^2 a-cos^2a)]
=1+sin^2 acos^2 a/[2sin^2 a*cos^2 a]
=1+1/2
=3/2
=[1-(sin^6 a+cos^6 a)]/[(1-sin^4 a-cos^4 a]
=[1-(sin^2 a+cos^2 a)(sin^4 a-sin^2 acos^2 a+cos^4 a)]/[(1-sin^4 a-cos^4 a]
=[1-(sin^4 a-sin^2 acos^2 a+cos^4 a)]/(1-sin^4 a-cos^4 a)
=[1-sin^4 a+sin^2 acos^2 a-cos^4 a]/(1-sin^4 a-cos^4 a)
=1+sin^2 acos^2 a/(1-sin^4 a-cos^4 a)
=1+sin^2 acos^2 a/[(1-sin^4 a)-cos^4 a]
=1+sin^2 acos^2 a/[(1-sin^2 a)(1+sin^2 a)-cos^4 a]
=1+sin^2 acos^2 a/[cos^2 a(1+sin^2 a)-cos^4 a]
=1+sin^2 acos^2 a/[cos^2 a(1+sin^2 a-cos^2a)]
=1+sin^2 acos^2 a/[2sin^2 a*cos^2 a]
=1+1/2
=3/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点