题目
问一道对数函数题
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)图像上任意一点P关于原点对称点Q的轨迹恰好是函数f(x)的图像.
(1)写出函数g(x)的解析式;
(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
请写的清楚点 用∵ ∴连接
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)图像上任意一点P关于原点对称点Q的轨迹恰好是函数f(x)的图像.
(1)写出函数g(x)的解析式;
(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
请写的清楚点 用∵ ∴连接
提问时间:2020-11-21
答案
(1)设P(x,y)是函数y=g(x)图象上的任意一点
则P关于原点的对称点Q的坐标为(-x,-y)
∵已知点Q在函数f(x)的图像上
∴ -y=f(-x),而f(x)=loga(x+1)
∴ -y=loga(-x+1)
∴y=-loga(-x+1)
而P(x,y)是函数y=g(x)图象上的点
∴y=g(x)=-loga(-x+1)=-loga(1-x)
(2)当x∈[0.1]时,
f(x)+g(x)=loga(x+1)-loga(1-x)
=loga[(1+x)/(1-x)]
下面求当x∈[0.1]时,f(x)+g(x)的最小值
令(1+x)/(1-x)=t,求得x= (t-1)/(t+1)
∵x∈[0.1]
∴ 0≤x≤1
即0≤(t-1)/(t+1)≤1,解得t≥1
∴ (1+x)/(1-x)≥1,又a>1
∴ loga[(1+x)/(1-x)])≥loga1=0
∴ f(x)+g(x)≥0
∴ 当x∈[0.1]时,f(x)+g(x)的最小值为0
∵ 当x∈[0.1]时,总有f(x)+g(x)≥m成立
∴ m≤0
∴所求m的取值范围:m≤0
则P关于原点的对称点Q的坐标为(-x,-y)
∵已知点Q在函数f(x)的图像上
∴ -y=f(-x),而f(x)=loga(x+1)
∴ -y=loga(-x+1)
∴y=-loga(-x+1)
而P(x,y)是函数y=g(x)图象上的点
∴y=g(x)=-loga(-x+1)=-loga(1-x)
(2)当x∈[0.1]时,
f(x)+g(x)=loga(x+1)-loga(1-x)
=loga[(1+x)/(1-x)]
下面求当x∈[0.1]时,f(x)+g(x)的最小值
令(1+x)/(1-x)=t,求得x= (t-1)/(t+1)
∵x∈[0.1]
∴ 0≤x≤1
即0≤(t-1)/(t+1)≤1,解得t≥1
∴ (1+x)/(1-x)≥1,又a>1
∴ loga[(1+x)/(1-x)])≥loga1=0
∴ f(x)+g(x)≥0
∴ 当x∈[0.1]时,f(x)+g(x)的最小值为0
∵ 当x∈[0.1]时,总有f(x)+g(x)≥m成立
∴ m≤0
∴所求m的取值范围:m≤0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1一个大人带两个小孩子过河,河上没 桥,河边只有一条小船,般最多可载70千克,大人重68千克,一个小孩子重30千克,另一个小孩子重35千克.问:他们怎样才能全部过河?
- 2白令海峡是什么分界线(三种)
- 3英语翻译
- 4草字头,下面一个四字,下面一个秃宝盖,下面一个瓦
- 5补充句子
- 6某岩石呈灰色,铁锤在其上划过时能留下一条白痕,加盐酸后产生剧烈气泡,此岩石是(急!)
- 7已知方程组2x-3y=1-a -3a+2y=7+5a的解满足不等式x+y<0 a的取值范围是
- 8求几句优美的句子,有仿写也行
- 9英语:all the people ______(do) housework on sundays
- 101/(1+cosx)dx积分