当前位置: > 【高考】若数列{an}满足,a1=1,且a(n+1)=an/1+an,证明,数列{1/an}为等差数列,并求出数列{an}的通......
题目
【高考】若数列{an}满足,a1=1,且a(n+1)=an/1+an,证明,数列{1/an}为等差数列,并求出数列{an}的通...
【高考】若数列{an}满足,a1=1,且a(n+1)=an/1+an,证明,数列{1/an}为等差数列,并求出数列{an}的通项公式

提问时间:2020-11-20

答案
a(n+1)=an/1+an
a(n+1)(1+an)=an
a(n+1)+a(n+1)an=an 两边除a(n+1)an
1/an+1=1/a(n+1)
1/a(n+1)-1/an=1
所以数列{1/an}为等差数列,公差d=1
1/an=1/a1+(n-1)d=1+n-1=n
an=1/n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.