当前位置: > O为△ABC所在平面内一点,且[OA]^2+[BC]^2=[OB]^2+[CA]^2=[OC]^2+[AB]^2,试证:点O是△ABC的垂心...
题目
O为△ABC所在平面内一点,且[OA]^2+[BC]^2=[OB]^2+[CA]^2=[OC]^2+[AB]^2,试证:点O是△ABC的垂心

提问时间:2020-11-20

答案
只证明OA^2+BC^2=OB^2+AC^2
另一半同理可得
假设AO交BC于D,BO交AC于E
BC^2=(BF+CF)^2=BF^2+CF^2+2BFCF
=OB^2+OC^2-2OF^2+2BFCF=OB^2+OC^2-2OC^2+2CF^2+2BFCF=OB^2-OC^2+2(CF*BC)
OA^2+BC^2=OA^2+OB^2-OC^2+2(CF*BC)
同理可证
OB^2+AC^2=OA^2+OB^2-OC^2+2(CD*CA)
所以等价于要证明CF*BC=CD*CA
因为△AFC∽△BDC所以 CF/CD=AC/BC
即原命题成立
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.