当前位置: > 如图,在RT△ABC中,∠ACB=90°,sinA=三分之二,点D,E分别在AB,AC边上,DE⊥AC,DE=2,D...
题目
如图,在RT△ABC中,∠ACB=90°,sinA=三分之二,点D,E分别在AB,AC边上,DE⊥AC,DE=2,D

提问时间:2020-11-20

答案
完整原题如下:
在RT△ABC中,∠ACB=90°,sinA=2/3,点D,E分别在AB,AC边上,DE⊥AC,DE=2,DB=9,求DC的长.

 
证明:∵DE⊥AC,BC⊥AC,
∴DE∥BC.
∵sinA=BC/AB=2/3,设BC=2k,AB=3k, 
∵DE∥BC,∴AD∶DE=AB∶BC,
即(3k-9)∶2=3k∶2k,
解得k=2,
∴BC=4,AB=6,
∴DE 是△ABC的中位线,
∴CD是RT△ABC斜边上的中线,
∴CD=½AB=3. 
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.