当前位置: > 求函数y=sin2x+acosx+5/8a+3/2,闭区间0到二分之派的最大值...
题目
求函数y=sin2x+acosx+5/8a+3/2,闭区间0到二分之派的最大值

提问时间:2020-11-20

答案
函数y=sin2x+acosx+5/8a-3/2在闭区间[0,二分之派]上的最大值?
=sinx^2+acosx+5/8a-3/2
=1-cosx^2+acosx+5/8a-3/2
=-(cosx-a/2)^2+5/8a+a^2/4-1/2
若cosx=a/2,显然有最大值a^2/4+5/8a-1/2(a∈[0,1])
令a^2/4+5/8a-1/2=1
可解得a=-4(舍去)或则a=2/3
若a/2>1,显然最大值在cosx=1时取得(自己想想为什么).
那么原函数可以化解为:a+5/8a-3/2=1,a=20/13>1.显然也符合条件.
若a/20与条件矛盾,舍去.
因此当a=2/3或者20/13时,该函数可以取得最大值1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.