当前位置: > a b c 为三角形三边长,c为斜边,p(m,n)在直线ax+by+2c=0上,求m2+n2最小值...
题目
a b c 为三角形三边长,c为斜边,p(m,n)在直线ax+by+2c=0上,求m2+n2最小值
三角形为直角三角形 刚刚打漏了...

提问时间:2020-11-20

答案
三角形为直角三角形,c为斜边
则c^2=a^2+b^2 (1)
P(m,n)在直线L:ax+by+2c=0上
设原点O,则OP=√(m^2+n^2)
问题转化为求OP的最小值
由于P在直线L上运动,OP的最小值是O到直线L的垂直距离
即OP=d=Ia*0+b*0+2cI/√(a^2+b^2)=2c/c=2 [(1)代入]
所以m^2+n^2的最小值=d^2=2^2=4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.