当前位置: > 【急】已知sinαcosβ=-1/2,cosαsinβ的取值范围为...
题目
【急】已知sinαcosβ=-1/2,cosαsinβ的取值范围为
已知sinαcosβ=-1/2,cosαsinβ的取值范围为
最好有这类题的解题方法!

提问时间:2020-11-20

答案
sinαcosβ+,cosαsinβ =sin(α+β) 所以cosαsinβ=sin(α+β)-sinαcosβ=sin(α+β)+1/2属于[-1/2,3/2]
sinαcosβ-cosαsinβ=sin(α-β) 所以cosαsinβ=sinαcosβ-sin(α-β)=-1/2-sin(α-β) 属于[-3/2,1/2]
所以cosαsinβ的取值范围为: [-1/2,1/2]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.