当前位置: > 曲线y=根号x-1,y=x/2,与x轴围成的平面图形绕x轴y轴旋转一周所得的体积是多少?(用定积分来求),...
题目
曲线y=根号x-1,y=x/2,与x轴围成的平面图形绕x轴y轴旋转一周所得的体积是多少?(用定积分来求),

提问时间:2020-11-20

答案
绕x轴旋转一周所得的体积=∫π(x²/4)dx-∫π(x-1)dx
=[(π/12)x³]│-[π(x²/2-x)]│
=(π/12)(2³-0³)-π(2²/2-2-1²/2+1)
=2π/3-π/2
=π/6;
绕y轴旋转一周所得的体积=∫2πx(x/2)dx-∫2πx√(x-1)dx
=π∫x²dx-2π∫[(x-1)^(3/2)+(x-1)^(1/2)]dx
=[π(x³/3)]│-2π[(2/5)(x-1)^(5/2)+(2/3)(x-1)^(3/2)]│
=(π/3)(2³-0³)-2π[(2/5)(2-1)^(5/2)+(2/3)(2-1)^(3/2)]
=8π/3-32π/15
=8π/15.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.