当前位置: > 如图,在△ABC中,∠ACB=90°,AC=BC,点E在BC上,过点C作CF⊥AE于点F,延长CF使CD=AE,连接BD.求证:BD⊥BC....
题目
如图,在△ABC中,∠ACB=90°,AC=BC,点E在BC上,过点C作CF⊥AE于点F,延长CF使CD=AE,连接BD.求证:BD⊥BC.

提问时间:2020-11-20

答案
证明:∵∠ACB=90°,
∴∠BCD+∠ACF=90°,
∵CF⊥AE于点F,
∴∠AFC=90°,
∴∠ACF+∠EAC=90°,
∴∠DCB=∠EAC,
在△DBC和△ECA中,
BC=AC
∠DCB=∠EAC
CD=AE

∴△DBC≌△ECA,
∴∠DBC=∠ACB=90°,
即BD⊥BC.
若要证明BD⊥BC,只要证明∠DBC=90°即可,而根据已知条件易证△DBC≌△ECA,所以∠DBC=∠ACB=90°,问题得证.

全等三角形的判定与性质.

本题考查了全等三角形的判定和性质,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.