当前位置: > 求方程xyz + x2 + y2 + z2 = 2 确定的函数z = z( x,y)在点(1,0,-1)处的全微分dz,...
题目
求方程xyz + x2 + y2 + z2 = 2 确定的函数z = z( x,y)在点(1,0,-1)处的全微分dz,
是xyz + (x2 + y2 + z2)^(1/2) =2^(1/2)

提问时间:2020-11-20

答案
为方便,记p=√(x^2+y^2+z^2)
对x求导:yz+xyz'x+(x+zz'x)/p=0, 得:z'x=-(yz+x/p)/(xy+z/p)
同样,对y求导,得:z'y=-(xz+y/p)/(xy+z/p)
所以在(1,0,-1)处,
有p=√2
z'x=-(1/p)/(-1/p)=1
z'y=-(-1)/(-1/p)=-1/p=-√2/2
所以dz=z'xdx+z'ydy=dx-√2/2*dy
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.