题目
黎曼函数在x=0处的极限是多少
还有黎曼函数的连续性是怎么样的呢?
还有黎曼函数的连续性是怎么样的呢?
提问时间:2020-11-20
答案
黎曼函数定义; R(x)=0,如果x=0,1或(0,1)内的无理数; R(x)=1/q,如果x=p/q(p/q为既约真分数),即x为(0,1)内的有理数.
定理:黎曼函数在区间(0,1)内的极限处处为0. 证明:对任意x0∈(0,1),任给正数ε,考虑除x0以外所有黎曼函数的函数值大于等于ε的点,因为黎曼函数的正数值都是1/q的形式(q∈N+),且对每个q,函数值等于1/q的点都是有限的,所以除x0以外所有函数值大于等于ε的点也是有限的.设这些点,连同0、1,与x0的最小距离为δ,则x0的半径为δ的去心邻域中所有点函数值均在[0,ε)中,从而黎曼函数在x->x0时的极限为0. 推论:黎曼函数在(0,1)内的无理点处处连续,有理点处处不连续.
“对x=0,只需考虑有极限,证明完全一样.”
定理:黎曼函数在区间(0,1)内的极限处处为0. 证明:对任意x0∈(0,1),任给正数ε,考虑除x0以外所有黎曼函数的函数值大于等于ε的点,因为黎曼函数的正数值都是1/q的形式(q∈N+),且对每个q,函数值等于1/q的点都是有限的,所以除x0以外所有函数值大于等于ε的点也是有限的.设这些点,连同0、1,与x0的最小距离为δ,则x0的半径为δ的去心邻域中所有点函数值均在[0,ε)中,从而黎曼函数在x->x0时的极限为0. 推论:黎曼函数在(0,1)内的无理点处处连续,有理点处处不连续.
“对x=0,只需考虑有极限,证明完全一样.”
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点