当前位置: > 设A是n阶实对称矩阵,证明r(A)=r(A^2)...
题目
设A是n阶实对称矩阵,证明r(A)=r(A^2)

提问时间:2020-11-20

答案
证明:因为A是实对称矩阵所以 A 相似于对角矩阵 diag(λ1,λ2,...,λn)其中 λi 是A的特征值.因为相似矩阵有相同的秩,故 r(A) = λ1,λ2,...,λn 中非零数的个数.由A是实对称矩阵知A^2也是实对称矩阵且A^2的特征值为 ...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.