当前位置: > 求由曲面z=x^2+y^2,z=4-y^2所围立体的体积,用三重积分...
题目
求由曲面z=x^2+y^2,z=4-y^2所围立体的体积,用三重积分

提问时间:2020-11-20

答案
∵所求体积在xy平面的投影是S:x²/4+y²/2=1
∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy
=∫∫(4-x²-2y²)dxdy
=∫dθ∫(4-4r²)*2√2rdr (做坐标变换x=2rcosθ,y=√2rsinθ)
=16√2π∫(r-r³)dr
=16√2π(r²/2-r^4/4)│
=16√2π(1/2-1/4)
=4√2π.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.