题目
试着写出数列{Xn}n=1到正无穷不以常数a为极限的数学定义,并以此考虑{(-1)^n}n=1到正无穷极限不存在
提问时间:2020-11-19
答案
数列x(n)不以常数a为极限;
对任意的常数a,数列x(n)不以a为极限的定义:
存在某个ε> 0,使得对任意的自然数 N ,总存在一个自然数 n ,满足 n > N ,
使得 |x(n)-a|>=ε; 这就是数列x(n)不以常数a为极限的定义.
考虑数列 b(n) = (-1)^n ,其中 b(1)=-1 ,b(2)=1 ,b(3)=-1 ,b(4)=1 ,.
显然b(n)极限不存在,当然也不以任何常数为极限;用定义证明如下
对任给一个常数a,① 如果 a≠1 ,那么就取ε=|a-1|/2>0,对任意的自然数 N ,
都能找到一个偶数 n(事实上所有大于N的偶数都可以),满足n>N ,有
|x(n)-a|=|1-a|=2ε>ε,这样就按定义证明了b(n)不以a为极限 .
② 如果 a≠-1 ,类似于①中的方法,取ε=|a-(-1)|/2=|a+1|/2>0,对任意的自然数 N ,
都能找到一个奇数 n(事实上所有大于N的奇数都可以),满足n>N ,有
|x(n)-a|=|-1-a|=|a+1|=2ε>ε,这样也按定义证明了b(n)不以a为极限 .
综上所述,对任意常数a,数列b(n) = (-1)^n 不以a为极限.由于是摆动数列,(-1)^n 极限不存在.
对任意的常数a,数列x(n)不以a为极限的定义:
存在某个ε> 0,使得对任意的自然数 N ,总存在一个自然数 n ,满足 n > N ,
使得 |x(n)-a|>=ε; 这就是数列x(n)不以常数a为极限的定义.
考虑数列 b(n) = (-1)^n ,其中 b(1)=-1 ,b(2)=1 ,b(3)=-1 ,b(4)=1 ,.
显然b(n)极限不存在,当然也不以任何常数为极限;用定义证明如下
对任给一个常数a,① 如果 a≠1 ,那么就取ε=|a-1|/2>0,对任意的自然数 N ,
都能找到一个偶数 n(事实上所有大于N的偶数都可以),满足n>N ,有
|x(n)-a|=|1-a|=2ε>ε,这样就按定义证明了b(n)不以a为极限 .
② 如果 a≠-1 ,类似于①中的方法,取ε=|a-(-1)|/2=|a+1|/2>0,对任意的自然数 N ,
都能找到一个奇数 n(事实上所有大于N的奇数都可以),满足n>N ,有
|x(n)-a|=|-1-a|=|a+1|=2ε>ε,这样也按定义证明了b(n)不以a为极限 .
综上所述,对任意常数a,数列b(n) = (-1)^n 不以a为极限.由于是摆动数列,(-1)^n 极限不存在.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1某农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年
- 2给妈妈洗脚的作文 150字 要生动
- 3去括号:(1)+(3b-2a)=______ (2)-(-2x-y)=____ (3) +(-a²-a)=___ (4)-(-m+2n)=_____
- 4初一下册人教版语文书木兰诗一句一翻译
- 5关于拼音的轻声问题到底有没有个规则或者规律,现在孩子刚上学轻声的问题已经把我们家长都搞蒙了.
- 6肺是呼吸系统的主要器官,它位于胸腔内,左右个一个,左肺有两叶,右肺有三叶
- 7好像我背上的同他背上的加起来,就是整个世界.说说你对这句话的理解!急!在线等!
- 8我要扩句和缩句各10个(有答案)
- 9苏教版小学语文五年级下册练习三口语交际怎么写
- 10课堂作业本数学五年级下人教版20页参考答案