当前位置: > 不连续的函数一定不可导...
题目
不连续的函数一定不可导
为什么?

提问时间:2020-11-19

答案
给你随便举个函数f(x)=x假设在点x=1处为不连续点,且f(1)=2
根据导数含义在x=1求导=[f(x+h)-f(x)]/h(h区域0)
在x=1处
f(1+h)=1+h
f(1)=2
=[f(x+h)-f(x)]/h
=(1+h-2)/h=(h-1)/h=1-1/h
在h区域0时,1-1/h为无穷,所以函数不可导.
函数连续只是可导的必要条件,可导一定连续,连续不一定可导,不连续一定不可导.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.