当前位置: > 设正三角形ABC的边长为2,M是AB边上的中点,P是边BC上的任意一点,PA+PM的最大值和最小值分别记为s和t,则s2-t2=_....
题目
设正三角形ABC的边长为2,M是AB边上的中点,P是边BC上的任意一点,PA+PM的最大值和最小值分别记为s和t,则s2-t2=______.

提问时间:2020-11-19

答案
如图,作M关于BC的对称点M′与A的连线AM′与BC交点时PA+PM取最小值t,当P与C重合时为最大值s=2+3,过A作AD⊥M′M交其延长线于D,易知M′D=3MH=332,又因为AD=12,所以PM+PA=PM′+PA=AM′=7(勾股定理),故s-t=2+3-7...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.