当前位置: > 利用极限存在准则证明:limn趋向于无穷,n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=1...
题目
利用极限存在准则证明:limn趋向于无穷,n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=1

提问时间:2020-11-19

答案
证明:limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】limn【(1/n^2+nπ)+(1/n^2+nπ)+.(1/n^2+nπ)】 =limn(n/(n^2+nπ) =limn/n+π) =1所以limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+n...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.