当前位置: > 证明下列数列极限存在,并求极限...
题目
证明下列数列极限存在,并求极限
利用单调有界必有极限证明
设X1=10,X(n+1)=根号(6+Xn) (n=1,2,3.)
重点证明其如何证收敛

提问时间:2020-11-19

答案
显然
当x>3
x^2-x-6>0
等价于
xN>(6+xN)^(1/2)>x(N+1)
即当xN>3时
该数列单调递减
又可知3为该数列的下界(因为xN>3,xN+1>3所以x>3)
故,
依据单调有界必有极限,得该数列有极限
最后,在等式两端令n=无穷
可知极限为3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.