题目
过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A、B,O为坐标原点,则△PAB的外接圆方程是( )
A. (x-2)2+(y-1)2=5
B. (x-4)2+(y-2)2=20
C. (x+2)2+(y+1)2=5
D. (x+4)2+(y+2)2=20
A. (x-2)2+(y-1)2=5
B. (x-4)2+(y-2)2=20
C. (x+2)2+(y+1)2=5
D. (x+4)2+(y+2)2=20
提问时间:2020-11-19
答案
由圆x2+y2=4,得到圆心O坐标为(0,0),
∴△ABP的外接圆为四边形OAPB的外接圆,又P(4,2),
∴外接圆的直径为|OP|=
∴△ABP的外接圆为四边形OAPB的外接圆,又P(4,2),
∴外接圆的直径为|OP|=