当前位置: > 已知an=2n-1,an=b1/2+b2/2^2+b3/2^3+……+bn/2^n,求数列bn的前n项和Sn...
题目
已知an=2n-1,an=b1/2+b2/2^2+b3/2^3+……+bn/2^n,求数列bn的前n项和Sn

提问时间:2020-11-19

答案
an=2n-1
则a(n-1)=2n-3,相减得an-a(n-1)=2
而同时(n≥2)
an=b1/2+b2/2^2+b3/2^3+……+bn/2^n
a(n-1)=b1/2+b2/2^2+b3/2^3+……+b(n-1)/2^(n-1)
相减得
an-a(n-1)=bn/2^n
即bn=2^(n+1)
当n=1,a1=b1/2
→b1=2a1=2
故bn=2^(n+1),n≥2
bn=2,n=1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.