当前位置: > 实变函数 依测度收敛...
题目
实变函数 依测度收敛
设{fn}在区间[a,b]依测度收敛于f g(x)在R上一直连续
证明{g(fn)}在[a,b]依测度收敛于{g(f)}

提问时间:2020-11-18

答案
因为{fn}在区间[a,b]依测度收敛于f ,{fn}的子列{fni}依测度收敛于f.由黎斯定理,存在子列{fni},使得i趋近无穷大时lim{fni}=f,几乎处处于[a,b].
由g(x)在R上一致连续,得i趋近无穷大时lim g(fni)=g(f),几乎处处于[a,b].
在区间[a,b]上,由可测集上的连续函数是可测函数,得知g(fni)是可测函数且g(fni)是有限的.
再由Lebesgue定理:直接得到g(fni)依测度收敛于g(f)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.