当前位置: > lim n((1+n)的n次-e) 等于多少 n趋向无穷...
题目
lim n((1+n)的n次-e) 等于多少 n趋向无穷

提问时间:2020-11-18

答案
原式 = +∞
如果题目是 lim(n->∞) n * [(1+ 1/n)^n - e] 利用Heine定理.
lim(x->+∞) x * [(1+ 1/x)^x - e] = lim(x->+∞) [(1+ 1/x)^x - e] / (1/x)
=lim(u->0) [(1+u)^(1/u) - e ] / u 令 u = 1/x,u->0+
=lim(u->0) e^[(1/u) ln(1+u)] * [ (-1/u²) ln(1+u) + 1/(u (1+u)) ] 洛必达法则
= lim(u->0) e * [ u - (1+u) ln(1+u) ] / u²
= lim(u->0) e * [ -ln(1+u)]/ (2u) 洛必达法则
= - e /2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.