题目
已知抛物线y=-3/4x^2+3/4x-3/2,平移抛物线,使它与x轴交于A,B两点,与y轴交于C点,若B(-1,0)且AC=AB.求此时抛物线解析式
已知抛物线过点(2,1)且与x轴只有一个交点,这个交点的横坐标等于该抛物线与y轴交点纵坐标.求抛物线解析式
已知抛物线过点(2,1)且与x轴只有一个交点,这个交点的横坐标等于该抛物线与y轴交点纵坐标.求抛物线解析式
提问时间:2020-11-18
答案
1).
y=-3/4x^2+3/4x-3/2 = (-3/4)·(x - 1/2)^2 - 21/16 ,
由于平移后抛物线形状不变 ,故新抛物线可以描述为y = (-3/4)(x-k)^2 + t ,
A与B(-1 ,0)关于对称轴x = k对称,故A横坐标为:2k+1 ,新抛物线过B ,
求得:t = (3/4)·(1+k)^2 ,进而求得C纵坐标为:(3/4)(1 + 2k),
AC = AB ,所以(AC)^2 = (AB)^2 ,建立关于k的方程并整理可得到:
4k^2 = (1 + 2k)^2 + 9(1 + 2k)^2/16 ,解得k = -5/2 或 -5/18 ,
对应的t值分别为:27/16 和 169/432 ,故新抛物线解析式可以为:
y = (-3/4)(x + 5/2)^2 + 27/16 或 y = (-3/4)(x + 5/18)^2 + 169/432
2).
因为抛物线与x轴只有一个交点 ,故该抛物线可以表示为完全平方式 ,即 :
y = a(x - k)^2 ,过点(2 ,1),则可得:1 = a(k - 2)^2 ,又因为
“与x轴交点的横坐标等于该抛物线与y轴交点纵坐标”,所以k = a·k^2 ,
联立解得:k = 0 ,a = 4 或 k = 1 ,a = 1 或 k = 4 ,a = 1/4 ,
故抛物线解析式可能为:
y = 4x^2 或 y = (x - 1)^2 或 y = (x - 4)^2/4
y=-3/4x^2+3/4x-3/2 = (-3/4)·(x - 1/2)^2 - 21/16 ,
由于平移后抛物线形状不变 ,故新抛物线可以描述为y = (-3/4)(x-k)^2 + t ,
A与B(-1 ,0)关于对称轴x = k对称,故A横坐标为:2k+1 ,新抛物线过B ,
求得:t = (3/4)·(1+k)^2 ,进而求得C纵坐标为:(3/4)(1 + 2k),
AC = AB ,所以(AC)^2 = (AB)^2 ,建立关于k的方程并整理可得到:
4k^2 = (1 + 2k)^2 + 9(1 + 2k)^2/16 ,解得k = -5/2 或 -5/18 ,
对应的t值分别为:27/16 和 169/432 ,故新抛物线解析式可以为:
y = (-3/4)(x + 5/2)^2 + 27/16 或 y = (-3/4)(x + 5/18)^2 + 169/432
2).
因为抛物线与x轴只有一个交点 ,故该抛物线可以表示为完全平方式 ,即 :
y = a(x - k)^2 ,过点(2 ,1),则可得:1 = a(k - 2)^2 ,又因为
“与x轴交点的横坐标等于该抛物线与y轴交点纵坐标”,所以k = a·k^2 ,
联立解得:k = 0 ,a = 4 或 k = 1 ,a = 1 或 k = 4 ,a = 1/4 ,
故抛物线解析式可能为:
y = 4x^2 或 y = (x - 1)^2 或 y = (x - 4)^2/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1不是花中偏爱菊,此花开尽更无花.
- 2有些事情本身我们无法控制 只好控制自己 --找个能表达这意思的词
- 3指出下列句子中的错误并改正 Does jack and his cousin have hamburgers?It’s a egg on the plate.
- 4don’t think it advisable_______.
- 5T℃时,取1.97g BaCO3于烧杯中,加50mL蒸馏水充分溶解后得到浊液.往浊液中加入50mL某浓度的Na2SO4溶液充分反应,可以使BaCO3完全转化为BaSO4.则转化后的溶液中SO42-的浓
- 6A beautiful car ____her by her classmates A.sent to B.will send to C.was sent to 为什么?
- 7我今天讲话的题目是.用英语怎么说
- 8和朝花夕拾相似的词语
- 9请帮我看看这英文有没有问题
- 10齐次线性方程组ax=0的系数阵的秩r,则解空间的维数为《 》
热门考点