当前位置: > 已知函数f(x)=(ax2+bx+c)e-x的图象过点(0,2a),且在该点处切线的倾斜角为45° (1)用a表示b,c;(2)若f(x)在[2,+∞)上为单调递增函数,求a的取值范围....
题目
已知函数f(x)=(ax2+bx+c)e-x的图象过点(0,2a),且在该点处切线的倾斜角为45°
(1)用a表示b,c;(2)若f(x)在[2,+∞)上为单调递增函数,求a的取值范围.

提问时间:2020-11-18

答案
(1)f′(x)=-[ax2+(b-2a)x+c-b]e-x由已知得:f/(0)=b−c=1f(0)=2a,∴c=2ab=1+2a(2)由(1)得f′(x)=-(ax2+x-1)e-x∵f(x)在[2,+∞)上为单调递增函数,则f′(x)≥0在[2,+∞)上恒成立.即ax2+...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.