当前位置: > 证明a^1/n+b^1/n>(a+b)^1/n a,b>0.n>=2...
题目
证明a^1/n+b^1/n>(a+b)^1/n a,b>0.n>=2

提问时间:2020-11-18

答案
这个好像很显然
令c=a^(1/n),d=b^(1/n)
由于(c+d)^n=c^n+n*c^(n-1)*d+...+d^n>c^n+d^n
所以c+d>(c^n+d^n)^(1/n)

a^1/n+b^1/n>(a+b)^1/n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.