当前位置: > 已知正三棱锥P—ABC,点P,A,B,C都在半径为根号3的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为...
题目
已知正三棱锥P—ABC,点P,A,B,C都在半径为根号3的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为

提问时间:2020-11-18

答案
设PA=a,由于是正三棱锥,那么PA=PB=PC,PA,PB,PC两两互相垂直,可知此三棱锥是一个边长为a的正方体的一角,
那么球心O到P的距离,也就是球半径为r=(根号3)/2 ×a,可知a=2根号3
此三棱锥的体积是1/6a^3=4根号3
三角形ABC的为正三角形,边长为2根号6.,那么三角形ABC面积是12根号3
考虑三棱锥体积是4根号3
那么P到地面三角形ABC的距离是1
那么求新到假面ABC的距离就是3-1=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.