当前位置: > 函数y=(x平方-x)/(x平方-x+1)的值域是 ....
题目
函数y=(x平方-x)/(x平方-x+1)的值域是 .

提问时间:2020-11-18

答案
y=(x平方-x)/(x平方-x+1)
=(x平方-x+1-1)/(x平方-x+1)
=1-1/(x平方-x+1)
因为x²-x+1=(x-1/2)²+3/4≥3/4
所以0<1/(x²-x+1)≤4/3
-4/3≤-1/(x²-x+1)<0
-1/3≤1-1/(x²-x+1)<1
所以函数的值域是【-1/3,1)
希望可以帮到你
祝学习快乐!
O(∩_∩)O~
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.