题目
(1 t^2)^1/2的原函数是什么
提问时间:2020-11-17
答案
求√(1+t²)的原函数
即∫√(1+t²)dt=√(1+t²)*t-∫td√(1+t²)=√(1+t²) *t-∫t²/√(1+t²)dt
=√(1+t²)*t-∫[(√(1+t²))²-1]/√(1+t²)dt
=√(1+t²)*t-∫√(1+t²)dt+∫1/√(1+t²)dt 此步化下一步的证明在最下方
=√(1+t²)*t-∫√(1+t²)dt+ln(t+√(1+t²))+C
所以∫√(1+t²)dt=1/2√(1+t²)*t+1/2ln(t+√(1+t²))+C2 C2=1/2)*C
求∫1/√(a²+x²) dx(a>0)
令x=atant,t∈(-π/2,π/2),dx=asec²tdt,√(a²+x²)=asect.
带入所求积分得
∫1/√(a²+x²) dx=∫(asec²t)/(asect) dt=∫sect dt=ln|sect+tan t|+C
.因为tant=x/a,所以sect=√(x²+a²)/a.
因此 ∫1/√(a²+x²)dx=ln(x/a+(√(x²+a²))/a)+C1
=ln(x+√(x²+a²))+C
其中C=C1-lna
即∫√(1+t²)dt=√(1+t²)*t-∫td√(1+t²)=√(1+t²) *t-∫t²/√(1+t²)dt
=√(1+t²)*t-∫[(√(1+t²))²-1]/√(1+t²)dt
=√(1+t²)*t-∫√(1+t²)dt+∫1/√(1+t²)dt 此步化下一步的证明在最下方
=√(1+t²)*t-∫√(1+t²)dt+ln(t+√(1+t²))+C
所以∫√(1+t²)dt=1/2√(1+t²)*t+1/2ln(t+√(1+t²))+C2 C2=1/2)*C
求∫1/√(a²+x²) dx(a>0)
令x=atant,t∈(-π/2,π/2),dx=asec²tdt,√(a²+x²)=asect.
带入所求积分得
∫1/√(a²+x²) dx=∫(asec²t)/(asect) dt=∫sect dt=ln|sect+tan t|+C
.因为tant=x/a,所以sect=√(x²+a²)/a.
因此 ∫1/√(a²+x²)dx=ln(x/a+(√(x²+a²))/a)+C1
=ln(x+√(x²+a²))+C
其中C=C1-lna
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1一个长方体形状的儿童游泳池,长40米、宽14米,深1.2米.现在要在四壁和池底贴上边长为4分米的正方形瓷砖,需要多少块?RT
- 2陈述句变转述句怎么改(第三人称变第一人称)
- 3观察图中所示的小旗,判断船相对于岸上的楼房的运动状态有哪几种可能?并简单说明.
- 4great changes in our life 英语作文100字
- 5地球的自转,引起了( )变化
- 6请说明每一步的原因
- 7100个桃子分给5只大猴和10只小猴怎样分合理?(可用假设法)每只大猴分的100个桃子的百分之几,小猴呢?
- 8题海战术好吗?改错本用处大吗?
- 9已知1/1x2=1-1/2;1/2x3=1/2-1/3,1/3x4=1/3-1/4,1/4x5=1/4-1/5;…1/(n-1)n=1/n-1-1/n
- 10翟志刚是全球第几位漫步太空的航天员