题目
已知抛物线y^2=4x截直线y=2x+b所得弦长AB=3根号5,试在X轴上求一点P,让三角形ABP的面积为39
提问时间:2020-11-17
答案
联立y^2=4x和y=2x+b,得
4x^2+(4b-4)x+b^2=0
设点A和点B的坐标分别为(x1,y1),(x2,y2)(其中y10)
则,x1+x2=-(b-1),x1x2=b^2/4
同理可求得,y^2-2y+2b=.则y1+y2=2,y1y2=2b
因为弦长AB=3倍根号5,而|AB|=根号((y2-y1)^2+(x2-x1)^2)
而(y2-y1)^2=(y2+y1)^2-4y1y2
(x2-x1)^2=(x2+x1)^2-4x1x2
这样,可以求得b=-4
因此,直线方程为y=2x-4,即2x-y-4=0
设点P的坐标为(x3,0)
则,点P到直线2x-y-4=0的距离为|2x3-0-4|/根号(2^2+1^2)=|2x3-4|/根号5
又三角形ABP的面积为39
所以,(3倍根号5*|2x3-4|/根号5)/2=39
求得,x3=15,x3=-11(舍去)
所以,点P坐标为(15,0)
4x^2+(4b-4)x+b^2=0
设点A和点B的坐标分别为(x1,y1),(x2,y2)(其中y10)
则,x1+x2=-(b-1),x1x2=b^2/4
同理可求得,y^2-2y+2b=.则y1+y2=2,y1y2=2b
因为弦长AB=3倍根号5,而|AB|=根号((y2-y1)^2+(x2-x1)^2)
而(y2-y1)^2=(y2+y1)^2-4y1y2
(x2-x1)^2=(x2+x1)^2-4x1x2
这样,可以求得b=-4
因此,直线方程为y=2x-4,即2x-y-4=0
设点P的坐标为(x3,0)
则,点P到直线2x-y-4=0的距离为|2x3-0-4|/根号(2^2+1^2)=|2x3-4|/根号5
又三角形ABP的面积为39
所以,(3倍根号5*|2x3-4|/根号5)/2=39
求得,x3=15,x3=-11(舍去)
所以,点P坐标为(15,0)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1The aim of students who come to school is to study.But to study requires a right way,or you waste
- 2我真为能有这样一个好妈妈而感到骄傲!英语怎么写
- 3同步解析与测评数学 六年级上册数学广角1、2答案很着急,
- 4化简并求值 m^3-2m^2+m/m^3-m,其中m=2011
- 5水沸腾时的白气之后怎么了?
- 6The young man ____(die) when the policemen arrived.
- 76年纪下册数学题
- 82mol c中含多少c原子 1mol H2so4 中含多少H2so4 分子 1.5mol NaoH 中含多少Na离子和多少OH离子
- 9找反义成语
- 10英语翻译
热门考点