当前位置: > 二次函数f(x)满足f(4+x)=f(-x),且f(2)=1,f(0)=3,若f(x)在[0,m]上有最小值1,最大值3,则实数m的取值范围是_....
题目
二次函数f(x)满足f(4+x)=f(-x),且f(2)=1,f(0)=3,若f(x)在[0,m]上有最小值1,最大值3,则实数m的取值范围是______.

提问时间:2020-11-17

答案
∵二次函数f(x)满足f(4+x)=f(-x),
∴函数的对称轴为直线x=2,故可设函数解析式为f(x)=a(x-2)2+h,
∵f(2)=1,f(0)=3,
h=1
4a+h=3
,解得
h=1
a=
1
2

∴f(x)=
1
2
(x-2)2+1
1
2
(x-2)2+1=3,则x=0或x=4
∵f(x)在[0,m]上有最小值1,最大值3,
∴实数m的取值范围是[2,4].
故答案为:[2,4].
先确定函数的解析式,再根据f(x)在[0,m]上有最小值1,最大值3,即可求得实数m的取值范围.

二次函数的性质.

本题考查二次函数的性质,考查函数的解析式,解题的关键是确定函数的解析式.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.