当前位置: > 已知1+tanx/1-tanx=2006,则sin2x+tan2x的值为?...
题目
已知1+tanx/1-tanx=2006,则sin2x+tan2x的值为?

提问时间:2020-11-17

答案
首先,将sin2x+tan2x 化简,
sin 2x = 2sinx cosx = 2sinx cosx / (sin²x + cos²x ),
分子、分母同时除以 cos²x ,可以得到,sin2x = 2tanx /(1+ tan²x)
tan2x = 2tanx /(1 - tan²x)
由1+tanx/1-tanx=2006,可以得到,tanx = 2005 /2007 ,把它代入
sin2x + tan2x ,
所以,sin2x + tan2x = 2tanx /(1+ tan²x)+ 2tanx /(1 - tan²x),
通分后,可以得到,
sin2x + tan2x = 4tanx /(1 - tanx 的四次方)
所以,sin2x + tan2x = 4 × (2005/20070)/[1-(2005/2007的四次方)]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.