当前位置: > 已知直角三角形两直角边长分别为l、m,斜边为n,且l、m、n均为正整数,l为质数 求证:2(l+m+n)是完全平方数...
题目
已知直角三角形两直角边长分别为l、m,斜边为n,且l、m、n均为正整数,l为质数 求证:2(l+m+n)是完全平方数

提问时间:2020-11-16

答案
∵l2+m2=n2,∴l2=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l2,n-m=1.于是l2=n+m=(m+1)+m=2m+1,2m=l2-1,2(l+m+1)=2l+2+2m=l2+2l+1=(l+1)2.即2(l+m+1)是完全平方数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.