当前位置: > 如图,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(-3,2),连接AB,以AB为边向上作正方形ABCD. (1)当点B与点O重合时,求点C的坐标; (2)设点C的坐标为(x,y),请用含x的...
题目
如图,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(-3,2),连接AB,以AB为边向上作正方形ABCD.

(1)当点B与点O重合时,求点C的坐标;
(2)设点C的坐标为(x,y),请用含x的代数式表示y;
(3)E是点C关于原点的对称点,连接AE,当点B在x轴上运动时,求AE的最小值.

提问时间:2020-11-16

答案
(1)如图,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,
∵点A(-3,2),
∴OE=3,AE=2,
在正方形ABCD中,AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=90°,
∵∠BCF+∠CBF=90°,
∴∠ABE=∠BCF,
在△ABE和△BCF中,
∠ABE=∠BCF
∠AEB=∠BFC=90°
AB=BC

∴△ABE≌△BCF(AAS),
∴BF=AE,CF=BE,
∵点B与点O重合,
∴OE=BE=3,OF=BF=AE=2,
∴点C的坐标为(2,3);
(2)由(1)可知,BF=AE=2,CF=BE,
∵点C的坐标为(x,y),
∴BF=x,CF=y,
∴OB=y-3=x-2,
∴y=x+1;
(3)∵E是点C关于原点的对称点,
∴点E的坐标为(-x,-x-1),
∴AE=
(−x+3)2+(−x−1−2)2
=
2x2+18

∴当x=0时,AE最小=
18
=3
2
(1)过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,根据点A的坐标可得OE=3,AE=2,再根据正方形的性质可得AB=BC,∠ABC=90°,然后根据同角的余角相等求出∠ABE=∠BCF,再利用“角角边”证明△ABE和△BCF全等,根据全等三角形对应边相等可得BF=AE,CF=BE,然后求解即可;
(2)根据(1)的结论整理即可得解;
(3)根据关于原点对称的点的横坐标与纵坐标都互为相反数表示出点E,再利用勾股定理列式表示出AE,然后根据二次函数的最值问题解答即可.

正方形的性质;坐标与图形性质.

本题考查了正方形的性质,坐标与图形性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.