当前位置: > 求极限lim n趋向于无穷(1/n)*n次方根下(n+1)(n+2)⋯(n+n)...
题目
求极限lim n趋向于无穷(1/n)*n次方根下(n+1)(n+2)⋯(n+n)

提问时间:2020-11-16

答案
记原式=P,
P=[(n+1)(n+2)(n+3).(n+n)/n^n]^(1/n)
={[(n+1)/n][(n+2)/n][(n+3)/n].[(n+n)/n]}^(1/n)
=[(1+1/n)(1+2/n)(1+3/n).(1+n/n)]^(1/n)
取自然对数,
lnP=(1/n)[ln(1+1/n)+ln(1+2/n)+ln(1+3/n)+.+ln(1+n/n)]
设f(x)=ln(1+x),
则P=[f(1/n)+f(2/n)+...+f(n/n)]/n,
当n→∞时,

应用分部积分法可求得

则当n→∞时,lnP=ln(4/e),即P=4/e.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.