当前位置: > 设曲线C是平面内的两个定点F1、F2(|F1F2|=2c>0)的距离的平方和为常数2a^2(a>0)点的轨迹...
题目
设曲线C是平面内的两个定点F1、F2(|F1F2|=2c>0)的距离的平方和为常数2a^2(a>0)点的轨迹
这是一道让人没有什么思路的题目OAQ

提问时间:2020-11-16

答案
以线段F1F2中点为原点O,做直角坐标系XY
设C(x,y),则F1(-c,0) F2(c,0)
有:[(x+c)^2+y^2]+[(x-c)^2+y^2]=2a^2
化简为:x^2+y^2=a^2-c^2
轨迹为圆,轨迹方程为x^2+y^2=a^2-c^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.