当前位置: > 用数学归纳法证明:1*2+2*3+3*4+…+n(n+1)=1/3n(n+1)(n+2)...
题目
用数学归纳法证明:1*2+2*3+3*4+…+n(n+1)=1/3n(n+1)(n+2)

提问时间:2020-11-16

答案
第一项1*2=1*2*3/3成立
假设n=k时 1*2+2*3+3*4+…+k(k+1)=1/3k(k+1)(k+2)成立
则当n=k+1时 1*2+2*3+3*4+…+k(k+1)+(k+1)(k+2)
=1/3k(k+1)(k+2)+(k+1)(k+2)
=(k+1)(k+2)(1/3k+1)
=1/3(k+1)(k+2)(k+3)成立
所以1*2+2*3+3*4+…+n(n+1)=1/3n(n+1)(n+2)
给分吧 打数学式好辛苦……
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.