当前位置: > A是一个n阶正交矩阵,求证:(1)若|A|=-1,则|A+E|=0(2)若|A|=1,且n为奇数,则|A-Z|=0...
题目
A是一个n阶正交矩阵,求证:(1)若|A|=-1,则|A+E|=0(2)若|A|=1,且n为奇数,则|A-Z|=0
快帮帮小弟吧

提问时间:2020-11-16

答案
(1)因为A是一个n阶正交矩阵所以AA'=E所以|A+E|=|A(E+A')|=|A||A'+E|=|A||A+E|=-|A+E|则|A+E|=-|A+E|=0(2)同理|A-E|=|A(E-A')|=|A||E-A'|=|A||E-A|=|E-A|=(-1)^n|A-E|又因为n为奇数所以(-1)^n=-1即|A-E|=-|A-E|=0...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.