当前位置: > 设A为n阶矩阵,n为奇数,且满足AA^T=E,|A|=1.求|A-E|....
题目
设A为n阶矩阵,n为奇数,且满足AA^T=E,|A|=1.求|A-E|.
如题.

提问时间:2020-11-16

答案
|A-E|=|A-AA^T|=|A(E-A^T)|=|A|*|E-A^T| =|(E-A^T)^T|=|E-A|=(-1)^n|A-E|=-|A-E| 所以2|A-E|=0 |A-E|=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.