当前位置: > 求与圆(x-3)^2+(y-3)^2=2相切且在两坐标轴上截距相等的切线方程...
题目
求与圆(x-3)^2+(y-3)^2=2相切且在两坐标轴上截距相等的切线方程

提问时间:2020-11-15

答案
设切线的方程为
x/a+y/a=1,
h化为一般式:
x+y-a=0
与圆(x-3)^2+(y-3)^2=2相切,则有
圆心到切线的距离=半径
圆心(3,3),半径=√2
|3+3-a|/√2=√2
2=|6-a|=|a-6|
a-6=±2
a=4或8,
切线方程为:x+y=4或x+y=8.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.