题目
如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=______.
提问时间:2020-11-15
答案
连接A1C,根据A1B=2AB,得到:AB:A1A=1:3,
因而若过点B,A1作△ABC与△AA1C的AC边上的高,则高线的比是1:3,
因而面积的比是1:3,则△A1BC的面积是△ABC的面积的2倍,
设△ABC的面积是a,则△A1BC的面积是2a,
同理可以得到△A1B1C的面积是△A1BC面积的2倍,是4a,
则△A1B1B的面积是6a,
同理△B1C1C和△A1C1A的面积都是6a,
△A1B1C1的面积是19a,
即△A1B1C1的面积是△ABC的面积的19倍,
同理△A2B2C2的面积是△A1B1C1的面积的19倍,
即△A1B1C1的面积是19,△A2B2C2的面积192,
依此类推,△A5B5C5的面积是S5=195=2476099.
故答案为:2476099.
因而若过点B,A1作△ABC与△AA1C的AC边上的高,则高线的比是1:3,
因而面积的比是1:3,则△A1BC的面积是△ABC的面积的2倍,
设△ABC的面积是a,则△A1BC的面积是2a,
同理可以得到△A1B1C的面积是△A1BC面积的2倍,是4a,
则△A1B1B的面积是6a,
同理△B1C1C和△A1C1A的面积都是6a,
△A1B1C1的面积是19a,
即△A1B1C1的面积是△ABC的面积的19倍,
同理△A2B2C2的面积是△A1B1C1的面积的19倍,
即△A1B1C1的面积是19,△A2B2C2的面积192,
依此类推,△A5B5C5的面积是S5=195=2476099.
故答案为:2476099.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点