当前位置: > 大学微积分 求极限时经常能用得上的万能公式...
题目
大学微积分 求极限时经常能用得上的万能公式
就是等价公式.比如 X趋向于0时 Sin x/ x =1 之类的.没打错吧.

提问时间:2020-11-15

答案
还有当x->0时,tanx/x=1,arctanx/x=1
lim(x->0)(1+x)^(1/x)=e
lim(x->∞)(1+1/x)^x=e
lim(x->0)[x*sin(1/x)]=0
或者lim(x->∞)[(1/x)*sinx]=0
等价无穷小代换,
当x→0时,  sinx~x   tanx~x   arcsinx~x arctanx~x   (1-cosx)~(1/2)*(x^2)~secx-1  (a^x)-1~x*lna ((a^x-1)/x~lna)   (e^x)-1~x   ln(1+x)~x   (1+Bx)^a-1~aBx   [(1+x)^1/n]-1~(1/n)*x   loga(1+x)~x/lna   (1+x)^a-1~ax(a≠0)
等价无穷小在应用的时候,必须是相乘或相除的关系才能代换
比如lim(x->0)tanx/x =lim(x->0)x/x=1 
但是lim(x->0)(tanx-x)/e^x像这种情况,就不能将tanx~x得到极限为0的结论
万能公式都是可以用定理以及洛必达法则或等价无穷小代换来求得的,所以掌握方法最重要,因为公式容易记混的.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.